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In quasisteady formulation accurate solutions are obtained for the problem of melting of a semiinfinite solid wedge 

in which its dihedral angles have an aperture angle ~t, where t is a simple fraction. 

The present work is a continuation of [1, 2] and uses the same formulation of the problem on the melting of solids. 

In Cartesian coordinates, the quasisteady heat conduction for a solid, melting along the z-axis, has the form [1]: 

O~'U O2U + O~U vo OU 
Ox - - - 7  4- 092 Oz 2 + a Oz -----0 

with the boundary conditions 

(1) 

Ulz = 0; Ulh~n ~ 0; U]~  = -~  U=, (2) 

where U(x, y, z) is the temperature at the point of a solid with coordinates x, y, z; f~ is the region of a melted solid confined by 

a surface performing forward movement  with a velocity v 0 along the z-axis; h is the shortest distance between the point (x, y, z) 

and the solid boundary. 

Introduce dimensionless variables: 

~i = ( x c o s %  + Vcos~[~i + zcosOi)vo/a, i = I, 2, 3, 

where cos ~oi, cos ~Pi, cos 0 i are the direction cosines of the normal to the plane, the equation of which is ~i = 0. The geometric 

term ~i is the distance from the point with coordinates x, y, z to the plane ~i = 0 multiplied by v0/a. 

Consider the problem on the melting of the solid wedge, the faces of which are the planes ~i = 0. 

The heat-conduction equation (1) is now written in new variables 

O~U + O~U 02U O2U 02U 
o~ ~ + 2B + 2c  + 

au ou (3) + 2D O2U OU___~ + A~ _~ + A~ = 0 ,  

where B = cos V12; C = cos V13; D = cos V23; A i = cos 0i; V12 is the angle between the normals to the plane ~1 = 0, ~2 = 0; 

V13 is the angle between ~1 = 0, ~3 = 0, and V23 the angle between ~2 = 0, ~3 = 0. 

The fundamental solution of Eq. (3) is sought in the form 

U = e x p -  (~z~l + 13~ + V~s).] (4) 

Substituting Eq. (4) into Eq. (3) for determination of the multipliers a,/3, and }, yields the characteristic equation 

,9 (~, [5, y) = ~2 + [3~ + y3 + 2B~[5 + 2Cc~? + 2 D ~ ? -  Alo~ - -  A2[~ - -  A3y = 9" (5) 

The exponential function (4) is a solution of Eq. (3) if the point (a,/3, ~) ties on the ellipsoid (5). The algorithm for 

determining the spectra of points, allowing a solution for the dihedral angle to be written [2], makes it possible to calculate 
them. 
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Let 7 = 0 in the ellipsoid (5). This corresponds to the problem of searching for the spectra {r {fin B} entering the 

solution for the dihedral angle formed by the planes ~1 = 0, ~2 = 0. By the known value of the angle between them, the fraction 

is determined, with the aid of which we write the angle between the normals to the planes ~1 = 0, ~2 = 0; V12 = xq/(n + 1), 

n = 1, 2, ...; q = 1, 2, ..., n. The number n determines the quantity of points of the characteristic ellipse ,9 (a,/3, 0) required to 

write a solution. The spectra {anB}, {fin B} are found from the recurrence relations (12) from [2]: 

B 
a~ = A~P n (B) - -  A2Q,. (B); l~# = - -  AIQn (B) q- A2P n (B); 

P~ (B) = 1 - -  P~-2 (B) § 2BQ,_~ (B); O~ (B) = - -  Q~_~ (B) § 2BP,~_~ (B); (6) 

zcq 
so B = ~ o  B = 0 ;  B = c o s ~ - ;  P o = 0 ;  P ~ = l ;  Q o = Q ~ = 0 .  

n §  

The superscript B of the quantities O~n B and fin B denotes that they are calculated from B. 

According to (26) from [2], a solution of the two-dimensional problem is written in the form of a closing sum multiplied 

by U~. Write this sum as 
tl 

Ro (a0, ~o) = 1 -k ~ ( - -  1)P ( < sv[~v_ i > + < sv_x[~ v > ) -q- ( _  1)n < toni3 n } ,  
p= 1 

where (aifij) = exp --(ai~i+ fij~2)' In the notation of this sum R0(a0, t3o) , the subscript indicates a number of  the section y = 

?0, while the point (a0, fio) on the given section of the ellipsoid stands for the origin of spectra. 

Repeat this algorithm for the angle between the planes ~1 = 0, ~3 = 0, setting fi = 0 in (5). Determine the fraction 

e/(m + 1) to write the angle V13 = ~e/(m + 1) between the normals to ~l = 0 and ~3 = 0 where cos V13 = C. Using formulas 

similar to (6), we determine the desired spectra {amC}, {?m c} at fi = 0 

c AIPm (C) c am = - -  A~Qm (C); ?~n ---- - -  A~Q,, (C) q- A3Pr~ (C); 

Pm (C) -.-= 1 - -  P~_2 (C) q- 2CQm_~ (C); Q,n (C) = - -  Qrn_o. (C) -b 2CPm-a (C); (7) 

= = 0; P o =  0; t,1 = l ;  Q0 = = 0 .  

Analogously, for the angle between ~2 = 0 and ~3 = 0 we take a = 0 in (5) and determine the fraction s/(r + 1) which allows 

the angle V23 = ~s/(r q- 1) between the normals to these planes to be written as cos V23 = D. 

The spectra {flrD}, {?r D} are determined by formulas as (6) and (7): 

[5 D = A2Pr (D) - -  A~Q~ (D); 7 D = - -  A~Qr (D) + A3P~ (D); 

P, (O) 1 - -  P,_~ (D) -[- 2DQ~_~ (D); Qr (O) = - -  Q,-2 (D) -q- 2DP~_~ (O); (8) 

= = o ;  p o  = o ;  = l ;  Qo = = o .  

For the subsequent consideration, assume that B = C = D, A 1 = A 2 = A 3. This corresponds to the equal angles between the 

faces of a trihedron and the same slope of the faces to the z-axis along which melting occurs. In this case we obtain that spectra 

(6)-(8) have the equal number n of terms and, at the same time, ap from (6) is equal to a with the same number p found from 

(7): ap B = ap C = Up, this is valid both for tip and 7p- 

Consider cutting of the ellipsoid (5) by the plane 7 -- 71: 

a~ (s ,  1~) = 0:2 + ~2 + 2Bal~ - -  An (~o, [~o) ~ - -  A~ (~o, 13o) I~ = 0; 

A n  (so, [~o) = A1 - -  2C7~; A~I (so, [3o) = A~ - -  2D~I. 

Among the ellipsoid points 3 ( a ,  fi, ?) = 0 written in (7) and (8), the three points (a0, fi2 D, 71D), (a0, rio, el), (a2 c, riO, 

?1 c) lie on the ellipse 91(a, fi). From the equation 91(a, fi) = 0, other points are determined which together with those three 

points make the closed spectra {an}l, {fln}i with the spectra 7 = 71- The algorithm is as follows. The point (a0, rio, 71) is taken 

as the origin of  the spectra, i.e., ao, 1 = a0; fi0,l = fi0; while al ,  1 and fil,1 are determined from the equations 91 (ao,1, fl1,1) = 0 

and 91(ct1,1, fio,1) = 0; Ctl, 1 = All(a0,  fio); fil,1 = A21(a0 , fio)" All the ensuing an, 1 and fin,1 are found from the equations 

311(an + 1,1, f/in,l) = 0 and 91 (an, l, fin -+ 1,1) = 0 by recurrence formulas similar to (6): 

Sn.1 ---~ All (s0, ~o) Pn (~) --  A21 (O~o, [~o) Qn (B); 

~n,l = - -  A l l  (S0, ~0) On (B) + A21 (So, ~o) Pn (B). (9) 
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Since the polynomials Pn(B) and Qn(B) in (9) are the same as in (6) and the closure condition of the spectra {an}l,  

{fin)l does not depend on Atl(ao, rio) and A21(a o, rio), as shown in [2], then the newly calculated spectra (9) are deliberately 

closed for the given r3 as the spectra (6) are closed. Besides, the number of terms an, 1 and r3n,P forming the closed spectra (6) 

and (9), is the same. 

Note that all th ree  points, known at the beginning of this calculation on the section 9~ (a,/3) = 0, have entered the 

spectra (9). 

The calculated spectra (an}l, {r3n}l allow us to write the approximate closing sum: 

~ ( s 0 ,  ~0) = ~ + ]~ ( -  1)~( < ~ ~ _ ~ , ~  > + < s~_~[~,~ > )i+ ( -  1) ,~ < s~,~,~,~ > 
p=.l 

Next, consider cutting of the ellipsoid (5) by the plane y = Y2- 
Four points written in spectra (7), (8) lie on the ellipse ,92(a ,/3) = 0. The spectrum (7) contains the points 

while the spectrum (8) - 

(~?, i~o, v~), ( ~ ,  6~ v~), (lO) 

(so, ~D, ?D), (S0, ~D, V~)- (11) 

Now obtain separately for each given pair of points the other points of the section y = 72 forming the closing spectra. Take the 

point (al  C, r3o, Y2 C) from (10) as the origin and introduce new variables: 

~' = ~ - ~ f ;  ~' = [~-l~.. 

The equation for the ellipse 92(a,/3) = 0 in new variables has the form: 

a "  § 6 ' '  § 2Ba'[~' - -  Alz (a c, [~o) a '  - -  A2~ (s c, [~o) [~' = 0; 

Az,, (a 7, 60) = Az - -  2D? c - -  2Ba? - -  260. 

Let % '  = rio' = 0. From the equations 92(ao',  fiI') = 0 and 92(a1' ,  fl0') = 0 we determine a 1' = A12(% c, fl0) 

and ill '  = Aae(al  r rio), while from the equations 92(a'n +_ 1, r3'n) = 0 and 9z(an' ,  fin _+ 1) = 0 a '  n and fl'n are determined 

by the recurrence formulas similar to (6): 

a,; = &~ (a?, [50) P~ (S) - -  &.~ (~?, 80) Q~ (B); 

[3~ = - -  A~2 (a?, 60) O~ (B) § A~o (a c, ~o) P,~ (B). 

It is easy to see that the newly calculated spectra {a'n}, {fl'n} are closed for the given B as in the case of the sections Y = Y0 

and y = 71. The closing sum appropriate for the calculated spectra {a' n} and {r3'n} is written as 

R2 (s  c, [5o) ~ 1 + ' ~  ( - -  1)P( < ~ 15~_~ > -~ ( a~_,  15p > ), + ( - -  1) ~ ( r 13~ > (12) 

Note that in order to return to the original variables in (12), the entire sum should be multiplied by the exponent 
a c  c ( 1 fl072 ), the index of which contains the point taken as the origin of the spectra. The second point of the pair (10) is 

contained in the expression (alCroy2 c) R2(% c, ro). The other pair of points (11) of the section y = Y2 is subjecte d to the 

same manipulations. Taking the point (a o,/31 D, y2 D) as the origin of the spectra, we introduce new variables: 

On the ellipse .92(a , fl) ---- 0 the following recurrence relations are obtained; 

o:~ = AI~ (s0, [3~ ) P• ( B ) .  A~2 (%, [~ ) Q~ (B); 

[~ = - -  A~  (so, [3 D ) Q~ (B) 4- A~2 (ao, [3 D ) P~ (B); 

a,~ (=o, f i r )  --- A , - -  2 C v f  - -  ZB~? - -  2=0; 

A22 (no, [Sf ) = As - -  2 D ? ~  - -  2Bao - -  2 f~f .  

03) 
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The spectra {a"n}, {fl"n }, calculated from (13) allow obtainment of their appropriate closing sum: 

R~ (~o, [~ ) - 1 + 2 (- I)~ ( < ~z~ ~-i > + ( i~-i [~ ) ) + (-- i)" < cz~ [~n >. (14) 
p= I 

In order to return to the earlier variables, we multiply the entire sum (14) by the exponent with the initial point (c~0~1D72D). 

Then the product @031D72 D) R2(a o,/319) will contain the second point from (11). 

Next, combine the closing sums obtained from the section y = 72 into the total closing sum R(72): 

C C ~(?,) = < ~,~o~,~ > R~(~, ~, ~o) + < ~oP? ~,f > R~ (so, i~?). 

Analogously, the closing sums R(Tp) are calculated for the sections y = 7p, P = 3, 4, ..., n. 

Designate two spectra determined in (7) in terms of S(fi0). For the sections/3 =/3p, using the algorithm, described 

above for 7 = Zp, we determine the spectra S(fip). In the same manner, the spectra S(ap) are determined for the sections a = 

%. The spectra S(fip) and S(%) contain the values of 7' which are absent in the spectrum S(fi0). These new ? make it possible 

to obtain new sections of the ellipsoid 7 = 7n+m, m = 1, 2, ..., e and write, for these sections, the appropriate closing sums, 

from which the desired solution is composed 

n+e 

v = u .  ( - 1 ) .  + :..); 
p~O �9 �9 (15) 

R (?o) = < ~&oVo > Ro (CZo, [~o); R (?~) = < ~o[M'~ > R~ (~o, ~o). 

The points in (15) designate as yet unknown terms. 

Consider the section/3 = ez of the ellipsoid (5): 

9 (~, ~, ?) = ~,~ + 2 (1 -q- B) ~2 + 2 (C + D) cr - -  2A~ - -  A? = 0. 

Let v = a[2(1 + B)] 1/2, then the ellipse (16) may be written in the form 

2A 
?2 4- v 2 + 2 B ' ? v -  A ' v -  AY = O; A ' -  

' ] / 2 ( 1  -t-B) 

(16) 

(17) 

(18) 
C + D  

Be = 

1/2 (1 + B) 

Assuming C = D = B in (18) and considering B' = cos [=s/(r + 1)], we may obtain that -0 .5  < B' < 1. This means 

that if all three angles of a melted solid wedge are equal, then they must be larger than x/3 and smaller than ~, which follows 

from geometric considerations as well. 

For the ellipse (17), the spectra {7r} and {Vr} may be built [2] which form a closed chain of r elements for the quantity 

B': 

: g S  
r----- 1, s = l ,  2, ..., r. 

arccos B' 

Thus, the desired solution becomes closed at the r-th step, if the all calculations above are assumed as the 1st step. 

Calculations of  the 2nd step are started from determination of  three sections a = a0 (e),/3 = f10(2), 7 = 70 (2) which are 

determined from the closing points (an B, flnB), (an c, ynC), (fin D, 7n D) of the spectra (6), (7), (8): 

~ 2 )  = A1 - -  2 B [ ~  - -  2C? f ;  ~Co2~ = A2 - -  2 B ~  c - -  2DyC; 

V(02! ---- A a -  e B 2C(x,~ - -  2D[~,,. 

These sections allow calculation of the spectra S(a0(z)), S(fi0(e)), S(Y0 (2)) which, also as the spectra (6), (7), (8), give at the first 

step the onset of calculations of the second step. So, summands of the second step are added to the solution (15). Thus, the 

desired solution acquires the form: 

�9 n+e 

v=vo x X 
q=l p=O 

(19) 
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Finally, it is worth noting that the presented algorithm allows a solution to be written not only in the case when the all 

three angles of the melted solid wedge are equal but also when only two angles are equal. This follows from the fact that in (18) 

only C and D are equivalent. 

Example of a Part icular  Solution. Let the faces of a melted solid wedge be equally tilted about the fusion axis, i.e., A 1 = 

A 2 = A 3 = A. Prescribe two angles with the aperture n/3 and the third angle n/2 between its faces. The cosines are between 

normals to the faces C = D = -1/2,  B = 0. From formula (18) for these quantities B' = v~-/2 which corresponds to the angle 

zr/4 and determines the number of calculation steps as r = 3. From (10), (12), (14), the initial spectra are calculated: 

S ( % ) = { a o = 0 ;  a l : A ;  [3 o = 0 ;  [ ~ I : A } ;  

S ( ~ o ) = { a o = 0 ;  cq .... A; a 2 = 2 A ;  ?o .... 0; ? ~ = A ;  V 2 = 2 A } .  

Since C = D, then the spectrum S(ao) contains the same values of y as the spectrum S(/3o) has. Correspondingly to the 

obtained 7, the closing sums are written: 

R (?o) == l - -  < 0, A)--(A, 0 ) + < A ,  A ) ;  

R (?~ )=<0 ,  0, A ) - - < 2 A ,  0, A > - - < 0 ,  2A, A ) §  2A, A> ;  

R ( ? 2 ) =  ( A, 0, 2 A ) - - ( 2 A ,  0, 2 A ) - - (  A, 3A, 2 A > +  

- k ( 2 A ,  3A, 2 A > + < 0 ,  A, 2 A ) - - ( 3 A ,  A, 2 A > - -  

--<0,  2A, 2A>-?( 3A, 2A, 2A >. 

The closing point (cq,/31) of the section 70 = 0 gives the value of y0 (2) of the initial section of the second calculation 

step: 

?(05) ---- A - -  2 C ~  1 - - -  2D1~1 ---- A -k A -k A ' =  3A. 

For the section yo (2) = 3A, the closing sum is 

R(?~2))----- ( A ,  A, 3 A > - - <  3A, A, 3 A > - - ( A ,  3A, 3 A > + i 3 A ,  3A, 3 A > .  

The closing point of the section ~, = 71 has the coordinates (2A, 2A, A) which permit one to obtain yo (3) of the section of the 

third calculation step: 

?(03) - -  A - - - - 2 C o ~ 1 , 1  - -  2D[5t, 1 - -  71 = A q- 2A -[- 2A - -  A = 4A. 

For the section 70 (3) = 4A, the closing sum is: 

R(y~a)) = < 2A, 2A, 4A > - -  ( 2A, 3A, 4A > - -  < 3A, 2A, 4A > -i- < 3A, 3A, 4A >. 

Calculation of 9' in the spectra S(/3a), S(/32), SQ3o(2)), S(/30 (3)) yields no new y values. Therefore, the desired solution is as 

follows: 

u = u .  (R ('r - -  R (v~) + R (y~) - -  R ({g~) + R (v~o~)). 

NOTATION 

Z, surface of the melted solid wedge; (x, y, z), rectangular Cartesian coordinates; Vo, velocity of forward movement of the 

solid wedge surface relatively material points of this wedge; a, thermal diffusivity; U~, temperature at the solid points being at 

infinite distance from Z; ~1, ~2, ~3, auxiliary variables; ~oi, ~Pi, 0i, slopes of the normal to the surface Z to the z axis; A1, A2, A 3, 

B, C, D, A ~, B',  a,/3, 7, v, auxiliary constants; P n ,  Q n ,  polynomials; m, n, e, p, q, r, s, natural numbers. 
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